Observation of cation-specific critical behavior at the improper ferroelectric phase transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Gd</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi>MoO</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>

نویسندگان

چکیده

Gadolinium molybdate is a classical example of an improper ferroelectric and ferroelastic material. It established that the spontaneous polarization arises as secondary effect, induced by structural instability in paraelectric phase, which leads to unit cell doubling formation polar axis. However, previous x-ray diffraction (XRD) studies on gadolinium have been restricted limited ability include wide $2\ensuremath{\theta}$ range analysis, thus, at atomic scale, much remains be explored. By applying temperature-dependent XRD, we observe transition from tetragonal phase orthorhombic phase. The strain calculated based thermal evolution lattice parameters, Rietveld refinement data reveals displacement different cations follows critical behavior, providing insight into changes drive ferroelectricity molybdate.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase Transition Behavior of the Layered Perovskite CsBi0.6La0.4Nb2O7: A Hybrid Improper Ferroelectric

The phase behavior of the layered perovskite CsBi0.6La0.4Nb2O7, of the Dion-Jacobson family, has been studied by high-resolution powder neutron diffraction between the temperatures of 25 < T < 850 ◦C. At ambient temperature, this material adopts the polar space group P21am; this represents an example of hybrid improper ferroelectricity caused by the interaction of two distinct octahedral tilt m...

متن کامل

Critical Behavior at the Chiral Phase Transition ∗

C. Bernard, T. Blum, C.E. DeTar, Steven Gottlieb, U.M. Heller, J.E. Hetrick , Beat Jegerlehner , K. Rummukainen , R.L. Sugar, D. Toussaint, and M. Wingate, Department of Physics, Washington University, St. Louis, MO 63130, USA Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA Physics Department, University of Utah, Salt Lake City, UT 84112, USA and Zentrum für interdiszip...

متن کامل

Vortex critical behavior at the de - confinement phase transition

The de-confinement phase transition in SU(2) Yang-Mills theory is revisited in the vortex picture. Defining the world sheets of the confining vortices by maximal center projection, the percolation properties of the vortex lines in the hypercube consisting of the time axis and two spatial axis are studied. Using the percolation cumulant, the temperature for the percolation transition is seen to ...

متن کامل

Critical behavior in the electroweak phase transition.

We examine the behavior of the standard-model electroweak phase transition in the early Universe. We argue that close to the critical temperature it is possible to estimate the effective infrared corrections to the 1-loop potential using well known ε-expansion results from the theory of critical phenomena in 3 spatial dimensions. The theory with the ε-corrected potential exhibits much larger fl...

متن کامل

the effect of using critical discourse analytical tools on the improvement of the learners level of critical thinking in reading comprehension

?it is of utmost priority for an experienced teacher to train the mind of the students, and enable them to think critically and correctly. the most important question here is that how to develop such a crucial ability? this study examines a new way to the development of critical thinking utilizing critical discourse analytical tools. to attain this goal, two classes of senior english la...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Materials

سال: 2022

ISSN: ['2476-0455', '2475-9953']

DOI: https://doi.org/10.1103/physrevmaterials.6.034402